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This paper concerns derivations and interpretations of the uncertainty relations. 
The exclusive validity of the statistical interpretation is called into question. An 
individualistic interpretation, formulated by means of the concept of unsharp 
observables, is justified through a model of a joint measurement of position and 
momentum. 

1. I N T R O D U C T I O N  AND SUMMARY 

Although the uncertainty relations (UR) were discovered by Heisenberg 
(1927) more than 50 years ago, discussion of their interpretation has not 
ceased. There are a large number  of  publications on this issue, and we must 
therefore restrict ourselves to a selection of typical statements. Many 
textbooks, 2 essentially following Heisenberg's (1927, 1930) original ideas, 
expound the well-known ("common sense") individualistic interpretation 
(I) of  the UR: according to (i), the inequality 

Aq. Ap ---�89 (1) 

determines the limits of  the "unsharpnesses"  which are connected 
necessarily with the values of  joint posi t ion-momentum measurements;  thus 
it is impossible to measure s imul taneously  position (q, Aq) and momentum 
(p, Ap) of  an individual  par t ic lewi th  "inaccuracies" Aq, Ap violating (1). 
As a justification of (I) there are usually given derivations of  (1) through 
thought experiments such as Heisenberg's slit experiment or 3/microscope. 

1Institute for Theoretical Physics, University of Cologne, Cologne, Federal Republic of 
Germany. 

2Compare the books of Jauch (1968), Landau and Lifshitz (1959), Messiah (1970), and Sehiff 
(1968). 
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On the other hand, a number of authors 3 claim the exclusive validity of the 
statistical interpretation (S) saying that the values of position or momentum 
measurements made on an ensemble of systems in state W are distributed 
with statistical spreads Aq-------Aw0 and Ap _~ AwP ' respectively, which obey 
the inequality 

awQ" d~wP>-�89 (2) 

This relation is known to be a consequence of the Hilbert space formalism 
of quantum mechanics. It follows from the commutation relation 

[Q,P]r (~Edom(OP)c~dom(PQ)) (3) 

for position and momentum operators Q, P forming a Schr6dinger couple. 4 
Interpretation (I) of the UR has been challenged in two  ways. Popper 

(1934), Einstein (cf. Bohr, 1949) and Park and Margenau (1968) try to give 
examples of joint measurements with arbitrary accuracy. On the other side 
yon Neumann (1932) formulates an incommensurability theorem for incom- 
patible 5 observables, and according to Suppes ( 1961 ), the strict impossibility 
of joint measurements of position and momentum can be inferred from the 
nonexistence of joint probability distributions. Obviously, the two theses 
are in contradiction with each other, but each of them disproves (I). It 
appears that the three standpoints concerning the feasibility of joint 
measurements coexist up to now. In our opinion the confused situation 
results from two weaknesses in the various argumentations. 

First of  all, most thought experiments invented to prove or disprove 
(I) are not discussed strictly quantum mechanically but onlyin a semiclassical 
way; thus the possibility of coming into conflict with the formalism of 
quantum mechanics cannot be excluded and, as a matter of fact, Einstein's 
and Popper's proposals were shown to be wrong immediately (von 
Weizs~icker, 1934; Bohr, 1949). There are, of course, some quantum 
mechanical treatments of measuring processes: yon Weizs~icker's (1931) 
quantum electrodynamical calculation of the y microscope which could be 
regarded as an example in favor of (I), and Park's and Margenau's (1968) 
"historical" joint measurements with arbitrary accuracy. But in these 
approaches, as in the former cases, a second deficiency must be mentioned. 
Either the authors give no explicit definitions of a concept of"measurement"  
or, if they do, their concepts are tacitly assumed to be the only possible 
ones. The first alternative applies to all discussions of semiclassical thought 

3See, for example, Margenau (1963), Park (1968), Ballentine (1970), Ludwig (1976), and 
Gibbins (1981). 

4The question whether position and momentum observables are better represented by Heisen- 
berg couples than by Schr~idinger couples is discussed in some detail in Lahti (1980). 

5We shall call pairs of observables incompatible if their operators do not commute. 
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experiments and to von Weizs~icker's work where only intuitive ideas of 
"measurement"  and "accuracy" are presupposed. Von Neumann's  (1932) 
and Liiders' (1951) incommensurability theses as well as the nonexistence 
of joint probabilities rest upon the concept of (ideal) first-kind measure- 
ments which shall be seen to contain strong idealizations in the next section. 
That Park's and Margenaus's examples represent quite a strange conception 
of "measurement"  is pointed out by Jauch (1974) and by de Muynck et al. 
(1979). 

Thus the question of the tenability of the individualistic interpretation 
(I) of the UR still seems to be open. To systematize its discussion first of 
all a precise quantum mechanical formulation of (I) is needed. This can be 
given by means of the concept of fuzzy, or unsharp observables which has 
been developed by Davies and Lewis (1970) (who used the name "modified 
observables") and by Ali and Emch (1974) (who were the first to notice its 
significance for measuring "unsharpness").  In Section 2 it is argued that 
this notion just represents those generalizations of  the first kind measure- 
ments necessary to make possible joint position-momentum measurements. 
The corresponding definitions of "unsharpness" Aq and Ap are seen to be 
in good agreement with physicists' intuitive conceptions of real quantum 
measuring situations. In Section 3 a quantum mechanical model of  a joint 
position-momentum measurement is presented from which the precise 
meaning and the origin of the "unsharpness" can be read off: they represent 
measures of  the objective indeterminateness of position and momentum of 
a particle after preparatory measurements and must not be regarded as 
measurement inaccuracies (except for some classical limit). So relation (1) 
should be called "indeterminacy relation" or, since we shall retain the 
familiar name "uncertainty relation," one must keep in mind that the Aq, 
2~p are measures of a kind of  objective uncertainty or objective undecidedness. 

With these results it is possible to close a "logical gap" between (2) 
and (1) which was shown up by Popper (1932) and by Suppes (1961). If 
one assumes an individualistic 6 instead of a statistical interpretation of 
quantum mechanical probabilities and thus of (2) then (1) becomes a 
(logical) consequence of (2): /f in nature position and momentum of a 
particle must be indeterminate according to (2) then (preparatory) joint 
measurements necessarily lead to values (q, Aq), (p, zXp) with unsharpness 
satisfying (1). This conclusion results from the fact that the trace class 
operators W appearing in (2) may be interpreted in at least two different 
ways: first as state operators, and second, as (operator) densities for some 
joint position momentum observables. Each of these possibilities gives rise 

6There exists, of course, a probability theory built up operationally by means of a language 
referring to single physical systems. See Mittelstaedt (1981) and Stachow (1981). 
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to an interpretation of (2), a probabilistic (individualistic or statistical) one 
referring to sharp (single) measurements and a nonprobabilistic and 
individualistic one with respect to joint measurements with certain un- 
sharpnesses, that is, (1). 

2. TOWARD A C ONC EP T OF J O I N T  MEASUREMENTS 

2.1. Incommensurability of  Incompatible Observables 

The fundamental  concepts of  quantum mechanics in its standard formu- 
lation are those of  states and of observables of  a physical system S which 
reflect the procedures of  preparing S and of  performing measurements on 
it. While states are described through positive trace class operators W c 
J-s(Y0 +, observables usually are represented by self-adjoint operators A on 
the Hilbert space ~ of S or, equivalently, by their spectral measures 
pA : E ~ pA(  E ). The expressions 

pAw(E) =-- tr[ W. P a ( E ) ]  (4) 

are interpreted as the probabilities of  finding a result within the Borel set 
E ~ ~ ( R )  if an A measurement  is made on S in state W. A quantum 
mechanical theory of measurement  shows that the measuring processes 
compatible with this interpretation are (ideal) first-kind measurements ]  
These measurements may be characterized by their effect on the states of  
S. Let us consider the pure discrete spectrum case, 

A=Y, a a .P .  = Y~ a.P[q~,A] 
n n,A 

then one may distinguish two limiting cases: 

W ~ ( W; A)N -- E PloP.,.] WP[q~,,,~,] 
n,A 

W.oA ~ = P[~o.o, J WP[~o.o,Ao] (5a) 

which is von Neumann ' s  nonideal maximal measurement,  and 

P. WP. ~ W~= A A W ~ ( W j A ) L = ~ ,  A A p . o w p .  ~ 
n 

(5b) 

Lfiders' ideal measurement.  
The operators (W;  A) correspond to the mixed states of  S after the 

measurement  interaction has ceased but before the results are registered. 

7This has been elaborated on in von Neumann (1932), Siissmann (1958), and Mittelstaedt 
(1976). 
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As soon as a value a, o has been fixed the system is known to be in state 
W, oA o of W, o. Both, maximal as well as ideal, measurements of two observ- 
ables A, B can be done jointly if and only if A and B commute. For example, 
Lfiders proved the theorem 

[A, B] : 0 ~ VwV,, paw({a,,}) A =p~w;B)~({a.}) 

Thus incompatible observables are incommensurable in the sense of first- 
kind measurements, and we conclude that this notion cannot in fact be 
employed for a formulation of (I). Yet it is possible to give a nontrivial 
conception of joint measurements for incompatible observables A and B 
if we regard first-kind measurements of functions F(A), G(B) as "unsharp" 
measurements of A and B. There exist pairs of incompatible observables 
A, B with some commuting functions which could be measured simul- 
taneously. But still this concept is too narrow for our purposes. Since 
position (or momentum) observable Q has continuous spectrum the only 
way to perform a first-kind position measurement is by measuring some 
function 

F ( Q ) =  ,,=-~ q.Q(E.) (E.c~E.,  =Q, U. E. = R )  

The following theorem (Lenard, 1972; Jauch, 1974; Amrein and Berthier, 
1977) forbids any joint measurement of such functions F (Q)  and G(P) :  

Theorem 6. Let Q(E) ,  P(F) be the spectral measures of Q, P;  E 
and F be measurable sets with nonvanishing finite Lebesgue measures 
0 < / z ( E )  �9 tz(F) <m.  Then 

Q(E) ^ P(F) = 0 

Q(R\E)  A P(F) = 0 

Q(E) A P(~ \F)  = 0  

Q(R\E) A P(R\F)  = R ~ O, 

(for semibounded E, F)  

(for semibounded E, F)  

dim(RY() = 

(6a) 

(6b) 

(6c) 

(6d) 

So the best one can do by means of first-kind measurements is to simul- 
taneously "localize" a particle into complements of, e.g., intervals E, F of 
position and momentum spectra. Lahti (1980) takes (6a) as an expression 
of complementarity in the sense of Bohr: measuring instruments which 
allow a unique determination of position or momentum (in intervals E, F)  
are mutually exclusive. 

The reason for the strict incommensurability of incompatible observ- 
ables must be seen in the representation of these observables through 
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projection-valued (PV) measures which brings about  the existence of first- 
kind measurements.  We call pA(E) (or E)  an objective property of S in W 
if W = pA(E) wpA(E), i.e. if W is an eigenstate of  pA(E). In this case the 
results E '  (E g E ' )  of  A measurements can be predicted with certainty, 
pa(E') = 1 ; measurements of  the first kind may therefore be called "objec- 
tifying" measurements.  Theorem 6 means that there are no (nontrivial) 
objectifying joint measurements of  position and momentum.  I f  such 
measurements exist they must be nbnobjectifying, which means that the 
corresponding concept of  observables can no longer be founded on PV 
measures. 

2.2. Introduction of Unsharp Observables 

From a frame theory of quantum mechanical measurement  the most 
general description of observables can be inferred (Ludwig, 1976). Prob- 
abilities generally are expressed by means of positive operators a with 
0-< a -< 1 called effects, 

p=tr[W, a] 

whereas observables may be represented by normalized positive operator- 
valued (POV) measures a:E~->a(E) which uniquely define self-adjoint 
operators A=~ A da(E~). Obviously the standard (PV) observables are 
contained as special cases. Now we have to find a more general class of  
POV observables for which the above-mentioned obstacles to joint measure- 
ments do not occur. We shall give first an intuitive sketch of the demands 
to be fulfilled by the "new" kind of observables. Then it will become clear 
that unsharp observables (Ali and Emch, 1974; Ali and Prugovecki, 1976) 
possess all desired properties. 

It was yon Neumann,  8 who pointed to the idealizations inherent in 
first-kind position measurements;  the boundaries of  position intervals are 
nothing but mathematical points which cannot be determined physically 
with unlimited precision. According to von Neumann there was no need 
to elaborate this idea of  unsharply defined (i.e., "fuzzy") sets at that time. 
From the above considerations it becomes apparent  that it might be just 
the modification necessary to achieve the desired concept of  "unsharpness"  
in measurements.  We get a nice physical argument against the possibility 
of measuring a property Q(E) (E being an interval) if we remember  that 
it takes infinitely high potential wells to localize a particle within an interval 
E. In other words, an infinite amount of  energy is needed to prevent a 
bounded particle from tunneling away. So from scattering an object particle 
at another (measuring) particle localized by means of a realistic potential 

Svon Neumann (1932), pp. 222-223, footnote 126. 
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one can infer only some unsharply defined region of space but never a true 
Borel interval as the object's measured position. 

It is the transition from ordinary sets to fuzzy sets that enables one to 
describe just this sort of unsharpness. Whereas in ordinary set theory the 
element relation x ~ E can be represented by the characteristic function XE 
of E, XE(x) = 1, in the case of a fuzzy set Xe is replaced by a more general 
function v~ with the following properties: 

0 -  < pE(x)-< 1 

for any x, E~-~ ~x(E) -~ z,E(x) is a measure (Prugovecki 1974). 
The only difference from a characteristic function XE is that v~ may 

assume values unequal to 1 or 0. Now we proceed to the corresponding 
change in the description of observables. A spectral projection Q(E) is 
defined in configuration space representation by means of the equation 

( Q( E )q~)( q) = XE( q)q~( q) 

Replacing Xn by Z'E gives a new "effect" 

( a( E )qQ( q) = vE( q)q~( q) (7a) 

where a : E ~ a( E ) is a POV measure called unsharp position observable, or 
fuzzy observable. [The fuzzy sets /~ = (E, rE) need not be explicitly intro- 
duced into (7a); instead we shall always use the usual mathematically 
idealized sets E.] We shall assume that to vE (q) there corresponds a density 
function fq such that 

~'~(q) = fE dq' fq(q') (7b) 

Furthermore, the functions fq shall be supposed to be essentially the same 
for all q, i.e., 

A A 

f q ( q ' ) = f ( q ' - q )  (7c) 

which means that the position-measuring device corresponding to the fuzzy 
observable a works equally well in all regions of space. Then we may 
express (7a-c) in the following form: 

a ( E ) = I  ~ E ( q ) O ( d q ) = f R d q f ( q ) Q ( E + q ) ~ O y ( E  ) (8a) 

rE(q) = f dq' fq,(q) = ( f  * X~)(q) (Sb) 
d E 

fr q) =- f (  q - q') := f ( q ' -  q) -- fq( q') (8c) 
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The operators a (E)  appear as weighted means of all the spectral projections 
Q(E + q) generated from Q(E) by a translation. The functions fq :R ~ 
should obey the following postulates: 

fq (q') >_ 0 (9a) 

fq(q') = f o ( q ' -  q) ~ f ( q ' -  q) (9b) 

Rdq'fq(q') = 1 (9c) 

(Q)f~ =- fR dq' q'fq(q') = q (9d) 

(AsQ)2=__ 2 ~ _ (Q)fq- (Q)fq  = (Aq) <oo (9e) 

Conditions (9a)-(9c) are evident from the introduction of  the fq; by (9d) 
and (9e) we select such measures E~-->uE(q) for which the functions q--> 
ve (q) --- ( f  * XE) (q) are roughly concentrated around E. The POV measure 
E ~ Qy(E) defines a unique self-adjoint operator 

Qf=- fR qQy(dq) = Q - ( Q ) f l  = Q 

which turns out to coincide with the "o ld"  position operator (See also 
Schroeck, 1978). The spectral (PV) measure is obtained by setting f(q)= 
6(q). Another useful form of Qf(E) is the following: 

Qy(E) = (Xe * f)(Q) = I dq,~(q) 
d E 

(lO) 
t "  

~ ( q )  = JR Q(dq')fq(q')  ~ f q ( O )  

In the following we assume f to be such that ~-(q) is bounded for all q. 
A measurement of the POV observable Qy shall be described by its 

influence on the state of the object: 

JAy: E~-> ~f(E) (11) 
P 

~/f(E)  : W,-~,~ts(E)(W) = [ dq AqWAq 
d E 

Aq linear, bounded, and such that W-> 0 implies My(E)(W) -> 0. 
The connection with Qf is given by the probability formula 

prw(E) =- t r[W. Qf(E)]  = t r [ ~ f ( E ) (  W)] (12a) 
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which implies 
r *  

Q.dE) = J e  dq AqAq (12b) 

~(q) = A~Aq (12c) 

As we shall see below the individualistic interpretation (I) of the UR refers 
to certain preparatory measurements. A measurement of the unsharp observ- 
able Qy will be called preparatory if after registration of an "unsharp point" 
(q, fq) the system will be found in a (normalized) final state Wq with 

(Q)wq~-q=(Q)f~, AwqQ~-Aq=AfQ ( W e b  ~ (13) 

and a strict preparatory measurement leads to a final state Wq obeying 

(q'[Wqlq')=fq(q') (Wc6e) (14) 

In both cases the possibility is included that such final states Wq can be 
reached only from certain restricted classes Se_ 3-s(~) + of initial states W. 
(In general a measuring instrument is suited for certain situations, i.e., 
preparations of the objects, only.) By an unsharp point (q, fq) we mean a 
set Eq = [q - r q + r with 

3q << A q such that 
(15) 

Of(Eq) ~- ,~(q)3q, ,/~f(Eq)( W) ~-- AqWA-~3q =- 17Vq 
The approximate equalities are to be understood in the sense of strong 

continuity (for tSq ~ 0) and they hold if the map q ~ Aq is strongly continuous. 
From (10) and (12c) it can be shown that Aq has a representation 

Aq = Uq fR O(dq')dg(q'-q), U*q = U~', ],~(q)12=f(q) (16) 

Then condition (15) is equivalent to the following one [cf. (11)]: 

I dq'cb(4-q')Cp*([t'-q')=~q4~(~-q)4~*(~'-q) (for all q ' ,q '~)  
Eq 

which can be satisfied by a suited 3q if q~(q) has a bounded derivative. 
It follows that there exists no strict preparatory measurement for all 

initial states, 6e= ~-s(W)+: according to (14) the final state Wq must be 
independent of the initial state W, so because of (15) Aq and i f (q)  must 
take on the form 

Aq = I q>(C, ql, ~ = I r ql 
which is incompatible with (16) and (10). There is, however, a certain 
restricted class 9 0 c 5rs(~g) § of initial states which lead to strict preparatory 
measurements (see Section 3.1 below). 
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We have tried to give an intuitively convincing "derivation" of the 
concept of unsharp observables. The reader may convince himself that this 
notion fits very well with the usual intuitive ideas about unsharp localization. 
In his famous 1927 paper Heisenberg takes Gaussians as representations 
of the final states of a position measurement. Lamb (1969) gives a nice 
operational description of  a position measurement which should easily be 
expressible in terms of observables, too. Another suggestive example is 
Wootters' and Zurek's (1979) treatment of the double-slit experiment. It 
appears that unsharp observables correspond to real measuring situations; 
therefore we suggest to call the measurement of an unsharp (fuzzy) observ- 
able a real measurement, in contrast to the ideal first-kind measurements. 
(The term unsharp measurement seems to us quite misleading since as we 
have argued above the "unsharpness" inherent in the observables may not 
be confused with measurement errors.) 

The introduction of  unsharp observables implies an extension of  the 
usual quantum mechanical formalism which in our opinion is fully justified 
from the fact that it opens the possibility to describe "real" measurements. 
There are known at least three situations in quantum theory where a concept 
of "unsharpness" is indispensable. First, the strict incommensurability of 
incompatible observables may be relaxed only by means of unsharp observ- 
ables. Second, Wigner (1952) and Araki and Yanase (1960) showed that 
the possibility of first-kind spin measurements is in contradiction with 
conservation of angular momentum; the "measurement errors" introduced 
by these authors to resolve the contradiction are nothing but unsharpnesses 
of some fuzzy spin observables (Prugovecki, 1977). The third instance lies 
in the domain of relativistic quantum mechanics: in order to define a 
covariant localization concept for relativistic particles one has to give up 
the PV measures (Jauch and Piron, 1967) where the notion of unsharp 
observables leads to such a concept in a natural way (Ali and Emch, 1974; 
Prugovecki, 1976a, 1981). 

We shall concentrate on the first point, the possibility of joint measure- 
ments of unsharp position and momentum. 

2.3. Joint Measurements of Unsharp Observables 

A joint measurement of some observables will be explained as a 
measurement of a joint observable. A joint position-momentum observable 
ay.g is defined as a POV measure on phase space F = •2 

af, g(A) = Ja dq dp o~(q, p) (17a) 

with a continuous positive phase space distribution 

(q,p)~---~.~(q,p), O~-~(q,p) 
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bounded and with marginal observables 

ay, g(E xR) = Qf(E), af, g(• x F )  = Pg(F) (17b) 

being unsharp position and momentum observables [obeying (8) and (9)], 
respectively. The measures 

A ~ t r [ W .  ay,~(~)] 

are positive-definite phase space measures and thus may be interpreted as 
joint probability distributions. Ali and Prugovecki (1977) proved the follow- 
ing theorem: to a given pair of unsharpness measures Aq, Ap there exists 
a joint position-momentum observable ay,~ with AyO = 2Xq, Agp = Ap if and 
only if Aq, Ap obey the uncertainty relation (1), i.e., 

hq .  Ap _> �89 

In this case there exists a trace class operator Wo such that 

i 
o ~ ( q , p )  = (2,rrh) -1 exP(hPO ) e x p ( - ~ q P ) W o e x P ( h q P  ) e x p ( - h P O )  

=- (27rh)-l Wqp (18a) 

fq( q') = (q'[ Wqplq') = ( q ' -  ql Wolq' - q) (18b) 

gp(p') = (p'[ Wqpl p') = ( p' - p[ Wo[ p' - p) (18c) 

This construction enables us to overcome the obstacle given by (6): 

O<af, g (EXF)<-Qf (E) ,  O<af , , (E•  

that is, there exists a nontrivial (positive) lower bound to the marginal 
observables. 

Some joint observables ay, g have another advantage over the standard 
PV observables Q, P: for certain states qJo, Wo = P[q~o] leads to an informa- 
tionally complete af, g (Ali and Prugovecki, 1977), that is, tr[ W 1 �9 af, g (A) ]  = 

tr[W2 �9 ay, g(A)] [for all A~ B(F)] implies W1 = W2. By such joint measure- 
ments the initial states can be uniquely determined, which is not possible 
even from the combined statistics of sharp (Q(E),  P(F))  position and 
momentum measurements. As Ali and Prugovecki called it, standard quan- 
tum mechanics is redundant in the sense that it contains classes of indistin- 
guishable different states which redundancy vanishes after the introduction 
of (joint) unsharp observables. This fact again shows that fuzziness cannot 
properly be interpreted as (subjective) measurement error. 

From theorem (6) together with (18b,c) we learn that not both of the 
functions f, g may have bounded supports, so joint position-momentum 
measurements always are nonobjectifying as we had expected (Section 2.1). 
It appears that in the case of preparatory joint measurements (see below) 
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the hq, Ap are measures of the objective undecidedness of the measured 
observables in the final states and that--as we mentioned in the introduc- 
t i o n - t h e  uncertainty relation is an "indeterminacy relation". Thus we have 
established the formulation of the individualistic interpretation (I) of the 
UR which we were looking for. In the next section we shall check this 
interpretation by means of a theory of measurement which makes it plausible 
to regard measurements of observables azg as joint position and momentum 
measurements. 

To conclude this section we still have to define the notions of (strict) 
preparatory joint measurements. A joint position-momentum measurement 
is a measurement of ay.g, that is, a positive phase space measure: 

' ( 1 9 )  
t "  

J//y,g(A): W~--~ ~y,g(A)(W) = Ja dq dp AqpWAqp 

with linear bounded Aqp such that ~s,~ (A) (W) -> 0 for W-> 0. The probability 
of getting a result A is 

p~(A) ------- tr[ W. as,~ (A) ] = t r [ ~ g  (A)( W)] (20a) 

which leads to 

f 
ay, g(A) = Ja dq dp AqpAqp (20b) 

if(q, p) = AqpAqp (20c) 

In  analogy to the case of single observables we consider the registration 
of unsharp points ((q, fq), (p, ge)), or better, Eq • for which [cf. (15)] 

af, g( Eq • Fp ) = if(q, p ) .  (Sq 8p) 
(21) 

J/tf, g( Eq • Fp)( W)= AqpWAqp . ( Sq ~p)=- ff'qp 

The approximate equalities are guaranteed through strong continuity of the 
map (q, p)-~ Aqp, ./[/[f,,g is called a preparatory measurement if for a certain 
class 6e of initial states it leads to (normalized) final s t a t e s  Wqp obeying 

(Q)wqp=q=(Q)fq, AwqpQ~-Aq=AfQ 
( W c Se) (22) 

(P)wqp = P = (P)~, 5wqpP = Ap = Agp 

A strict preparatory measurement gives Wqp which possesses the following 
property: 

(q'] Wpqlq') --f~ (q'), (p'[ Wqp]p'> = gp(p') ( W c  ~e) (23) 
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According to (21) and (23) a strict preparatory measurement  for 50 = 3-s(~) + 
is possible only if 

aqp = ]@qp)(@qpl(2q'Y'h) -1/2, Wqp = P[qgqp] 

if(q, p) = (2~-h) Ip[t~qp] 
for which we get 

f o ( q ' )  = Iq~qp(q')] 2 : [Oqp(q')l 2, gp(P') = I~op(P')l 2-- I 4~qp(p')l 2 

Thus only observables generated through (18) by pure  states Wo = P[Oo] 
allow strict preparatory measurements.  

In the present context we may restrict ourselves to (strict) preparatory 
measurements 9 upon which the interpretation (I) of the UR is based. 

3. M O D E L  OF A J O I N T  P O S I T I O N - M O M E N T U M  
M E A S U R E M E N T  

3.1. Real Position Measurement 

First we shall study a model of a "real"  position measurement illustrat- 
ing the origin of  the unsharpness (i.e., function f )  inherent in the unsharp 
observables Q~ The combined application of  two such devices for position 
and momentum will then be seen to lead to a joint measurement  of  both 
observables. 

The position measuring apparatus M shall be divided into a microscopic 
part  M and a macroscopic part  M' ,  M = M &  M' .  The measuring process 
consists of  an interaction between object system S and M followed by a 
measurement  on M by means of M' .  Only the S - M  part is analyzed 
quantum mechanically, whereas the M - M '  part is treated as an ideal 
first-kind measurement.  The system S &  M is represented by the tensor 
product Hilbert space ~ ( ( S ) |  of the constituents S and M and its 
time evolution is generated by the Hamiltonian 

where 

Its= 

H = H s  + HM + HI  

Pe P ~  
+ V, HM -- , H I  = A Q |  (A > 0 ) ;  

2 m s  - 2ram 

The ~ function has been introduced as a simplified description of the 
impulsive character of  the measurement.  The change of state of  S & M 

9A general classification of measurements has been given in a paper by P. Lahti and the present 
author [Busch and Lahti (1984)]. 
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from time t = O_ to t = O+ is 

I*(0+))= ul*(0_))-= ul ,) 
f i l '~ 1 { i } 

U = - U ( 0 + , 0 _ ) = e x p / -  ~j0_ Hdt~=exp ---hhQ| 

With 

we get 

Busch 

I~')= fR dq IR dX ~(q)~(X- hq)[q)| 

([q) and IX) are the generalized-eigenstates of position operators Q and 
QM, respectively.) Immediately after the interaction has finished a first-kind 
position measurement on M (by means of M')  may lead to the objectification 
of some M property QM(/~); the corresponding S & M state reduction is 

1")  ~ [~r(E))= [ I |  

=h fR dq fEdq' q~(q)a~(Z(q'-q))lq)| 
(where we have substituted X = hq' , /~ = hE).  We get the effective change 
of state of S by reducing the projection operator P [ ~ ( E ) ]  to the Hilbert 
space W(S): 

P [ ~ ] +  17V(E) = fn dqAqn[q~]A-~ (24a) 

Aq = ~/-h fa qb(h(q - q'))Q(dq') (24b) 

(Aq~o)(q') = ~/h-~p(q')~b(A ( q -  q ' ) )~  q~q(q')=- ~(q')tpq(q') (24c) 

The measurement defined through (24) turns out to be a measurement of 
an unsharp position observable Qr This follows directly by comparison of 
(24b) with (16) or by application of (12): 

a(E)= yFdqo~(q)= fR(f*x~)(q)O(dq)=-O,(E) (25a) 

fq (q') = h [qb(h (q - q'))l 2 = IOq (q')[ 2 =--f(q'- q) (25b) 

The preparation qb of M must be such that the distribution function f in 
(25b) fulfils all postulates (9). Since in the (pure) state qb the M positions 
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are indeterminate within the support of qb(X) the model explains the origin 
of the indeterminacy measures 

1 
Aq =-- AfQ =-s QM > 0 (25C) 

from the preparation of the measuring device. The magnitude of Aq may 
be varied via M preparation (qb) or interaction (A). 

Before proceeding the following remark seems appropriate. The use 
of first-kind measurements (on M) in our model appears inconsistent with 
our approach because we had started by providing arguments against the 
feasibility of those sort of measurements; thus we should better replace this 
sharp M position measurement by a measurement of some unsharp M 
position observable. Yet, as our model shows the idealized (sharp) measure- 
ments on M are sufficient to produce fuzziness on the object level. Introduc- 
tion of unsharp observables on the M level would only give rise to second- 
order corrections of the S position unsharpness (25c). Therefore, we shall 
retain that idealization as a mathematical simplification. 

Now we have to specify the significance of the indeterminacy measures 
Ay0 for the object after a preparatory measurement. It is easy to characterize 
a class 5ec 3-s(~) + of initial states which allows (strict) preparatory 
measurements in the sense of (13) or (14). The state change resulting from 
registration of an unsharp point (q, fq) is 

q~( q') + ( 3q)l/2qOq( q') = ( t~q)l/2 ~o( q')~bq( q ') 

[cf. equation (15)]. These final states %(q')  (for all q) become approximately 
independent (up to a factor) of the initial state if q~(q') may be considered 
almost constant where the I~q(q') appreciably differ from zero, and we may 
define the class S ~ as the set of states P[q~] with 

qOq(q') = (p(q')lfiq(q') ~- ~p(q)~q(q') (for all q, q') (26) 

The normalized final s t a t e s  Wq=P[d/q] obey conditions (14) for strict 
preparatory measurements. For arbitrary registrations E we have 

P [ ~ ] +  IV(E)-~ [ dq I~(q)[2P[~bq] (27a) 
d E 

with probability 

Pe =--pf~(E) =tr[17V(E)]~- | dq[~(q)l 2 (27b) 
d E 

From this the significance of (26) becomes clear: the class 5e of initial states 
P[~p] has been chosen such that the distribution f cannot be distinguished 
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from the 8 distribution corresponding to sharp position measurements: 
pr~(E) ~-p~(E). Yet the difference becomes noticeable from the position 
uncertainty in the final states W(E) 

(Aw(E)Q) 2 = (A.~Q)2+ (AfQ) 2 
(28) 

r =- P~I/2Q(E)r W(E) =P-e' VC(E) 

The "localization" of the object into E is uncertain in an objective sense, 
i.e., indeterminate to an amount AfQ. It follows that, contrary to ideal 
first-kind measurements, real (preparatory) measurements generally are not 
"strongly" repeatable but only "weakly" repeatable (see footnote 9): one 
can at best make predictions with probabilities near 1 but not exactly equal 
to 1. In the above situation [class 9 ~ equation (26)] we have to take a "large" 
set E~ containing E in order to get a probability 

p:w(~)(E~) > 1 - e  (0< e<< 1) (29) 

for a repeated position measurement. 
As repeatability is a consequence of predictability it follows that real 

measurements are at best "weakly" predictable [in the sense of (29)]. There 
exists a class of initial states PIe]  for which our real position measurement 
is weakly predictable and weakly repeatable. Let q0 =(Q)~, A~Q<< AfQ so 
that the functions t~q(q') [equation (24c)] may be considered constant where 
~(q) is not negligibly small. Then we may approximate 

and we get 

~pq(q') =--- q~(q')~Oq(q') ~ ~(q')~'q(qo) (30) 

P[~o]--> 17r / dq IG(qo)l 2 
d E 

p:~(E) =tr[W(E)]--- ( d q f q ( q o )  
d E 

This probability is almost equal to 1 if g(q):=fq(qo)=f(qo-q) is concen- 
trated on E o = ( q o - 8 ,  qo+8). States ~ obeying (30) remain practically 
unchanged by a real position measurement. Yet, from a result E ~ Eo one 
cannot get any information about the "actual" value q0, one only knows 
that it must lay almost inside E. Although the unsharpness AjQ originates 
from some indeterminateness the uncertainty in the determination of qo 
from a result E is of a subjective nature. Thus the name "confidence" 
function for f [originally used by Prugovecki (1976b)] seems appropriate 
in this "classical" situation (30) only, whereas in the case of preparatory 
measurements (26) one should speak of "indeterminacy measure." 
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It seems typical of real measuring devices that they are applicable to 
certain restricted classes of situations only, preparatory measurements 
requiring conditions (26) and "classical" measurements requiring (30). 

3.2.  Jo int  P o s i t i o n - M o m e n t u m  M e a s u r e m e n t  

We are going to deal with the question what will happen if we combine 
two measuring devices for unsharp position Q / a n d  unsharp momentum 
Pg, respectively. As we have seen, the Hamiltonian 

H~ O)= hQ| (h > 0) 

can be used to construct a model of a real position (Qyo) measurement; 
similarly the interaction 

H(P)=txP@P26(t ) (/z > O) 

between the object system S and a second measuring particle M2 leads to 
a real measurement of unsharp momentum pgo. The preparations 6Pl, ~P2 of 
M1, M2 give rise to unsharp points (q, fO), (p, gO) with 

1 
f~ A[c~,(A(q-q'))] 2 , Ay~ = AA..Q~ 

(31) 
gO(p,) =l~[ap2(tz(p_p,))]2, Agop=l  A.2O2 

Iz 
From theorem (18) we should expect that a combination of both apparatuses 
would lead to a joint measurement only if preparations ap~, qb 2 obey certain 
conditions. But as will be seen there are no serious restrictions at all. 

We start with the Hamiltonian 

1-1i ~ H (Q'P)= {AQ| P,| 1 + / x P |  1 | (32) 

The initial state at t = 0_ of the combined system S & M, & M2, 

I*> = I r174  
is transformed by 

g = U(O+, 0_) = exp -~AQ|174174174 (33a) 

into the final state at t = 0+, 

I*'> = ul > 
From the identity 

e x p ( a +  B) = exp(a )  �9 exp(B) �9 exp(- �89 B]) 

(for [a,  [a,  B]] = [B, [a ,  B]] = 0) (33b) 
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we get the following useful form of U: 

U=exp{-hAQ|174 } �9 e x p { - h / Z P | 1 7 4  P2} 

�9 ,~/x P~ | P2} (33c) exp {2-~7[Q, P]| 

We denote by Q~, Q2 the position operators of M1, M2; further let IXi), IIIi) 
be the eigenstates of Q~, Pi; ~b~(X~)--= (X~l~i), ~)~(II;)-= Iq>OIx,>@ 
IX2) =--IqX1X2), etc. Then the following holds: 

xt,'( q, X,, X2) =- ( qxlXR],t,') 

f dFl 2 [ i \ 
Jo (2-~-~ exp~gx:n:) 

�9 q~(q-tzII2)*,(X,- aq +3-~II:) &dll~) (34) 

As in the case of the single measurements there are performed ideal first-kind 
measurements of Q~(E) and Q2(F) at t=0+: 

],I,')-~ ],IT(E, F))-- U| 0,(~)| Odtr)]lve') 

The final state of S is 

O O 

d E  d F 

1 [ i  , Aqp=(x)l/2I do'IRdq'(2,~)-i75exPk-s 3 
~" r �9 dpl(a(q-q')+-~(q-q")) dp2(l(q'-q"))lq')(q "1 (35b) 

Aqv[~~ ]r = (h/x)'/2 fR dq'lq'}~'(q" hq, tzp) (35c) 

The corresponding observable a is given through equation (20); its marginal 
observables are of the type of unsharp position and momentum observables, 
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respectively: 

a(E• a(R• (36) 

fq (q') = 27rh(q'lo%(q , p)lq') 

a X ,,~ 12 2 =~ yRdo" d~,(a(q-o')- '~q ] ' " ~ 2 ( l q  ") 

g,,(p') = 2 ~ ( p ' l , ~ (  q, p)lp') (37) 

It is easy to prove that f, g fulfil conditions (9). We restrict ourselves to 
(9d) and (9e). From (37) it follows 

1 
( Q)f~ = q - ~ (  Q1)a,~ - p-(P2)~: = q 

1 
(P)~ = P - - ( Q E ) %  - A (P1)r = p /z 

(38) 

The expectation values (Q~)~,, vanish since the preparations had been 
assumed to fulfil (9d); the (P~)., have been made zero by choice. Similarly 
(9e) is implied from the corresponding relations for fo,  gO in (31) if we 
additionally demand A%p~ < oo: 

4 2 (AfQ): = (A,~, Q,)2 + - -  (Ar < ~ 

1 2 a 2  2 (Agp)2=--~(A,~zQ2) +-~-(A.,P~) <oe /x 

(39) 

Thus we have established the following important result: the simultaneous 
application of two instruments Mr, ME suited for real position or 
momentum measurements leads to a joint measurement if each of the states 
qbl, qb2 may be considered a final state of some preparatory joint position- 
momentum measurement; that is, qbi may be characterized by unsharp 
position and momentum points. The observable a = ay, g is a joint position- 
momentum observable. It is from equation (39) that we are justified to 
interpret the unsharpness AyQ, Agp as measures of indeterminateness. The 
representations (37) o f f ,  g through some trace class operator 

Wqp = (2,trh) o~(q, p), tr[ Wqp] = 1 (40) 
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guarantees that the UR is valid for AyQ, Age, independent of the particular 
values of the AyoQ, A~oP in (31). 

Our model makes is plausible to interpret the measurements of axg as 
joint position-momentum measurements. This becomes most clear if we 
consider (strict) preparatory measurements. Within the present model the 
only possibility of strict preparatory measurements for arbitrary initial states 
P(~]  [in (23)] seems to be given by means of  the preparations 

�9 ,(X,) = (x/-~b) - '/2 e x p / - ~ l  X 2~ 
2b 2 lJ L 

b. c=Al~ h (41) 
-~/2 c 2 2 

This case is uniquely characterized by the minimal uncertainty product 

h 2 
( A ~ )  2. (A~P) 2 = ~- 

which corresponds to Gaussians L(q')=l,p~,(q')l ~, gp=(p')=16qp(p')l 2. 
Arthurs and Kelly (1965) gave a treatment of just this special case by means 
of a Hamiltonian similar to (32) and with values A = ~ = h = 1, b. c = �89 Our 
model has been developed as a generalization of their example in order to 
trace back the origin of the UR to the dynamics of the measuring process. 

It can be shown that in the general case our model fulfils condition 
(22) of (not strict) preparatory measurements. There exists a class 9 o of 
initial states P[~]  (obeying A~Q >> AyQ, A~P >> Agp and thus A~Q. A~P >> 
h/2) for which our model leads to final states Wqp characterized by (22). 
(The construction goes similar to that for single observables, see Section 3.1.) 

The possibility of  (strict) preparatory measurements allows us to inter- 
pret the unsharpnesses AyQ and A,P as measures of the position and 
momentum indeterminateness characteristic of the object after such measure- 
ments. 

As we found for single real position measurements there are no strongly 
predictable joint measurements: P. Lahti (1981) has shown that, for arbitrary 
joint observables as, g and arbitrary states W 

p~wg(A) = tr[ W. ay, g(A)] < 1 [A6 ~(a2) ]  

a result resting on Theorem (6). But again it can be shown that observables 
a~g admit weakly repeatable and thus weakly predictable measurements. 

3.3. A New "Derivation" of  the UR 

Although the UR f o r f  g follows formally from the representation (40) 
of  the density ,~(q, p) through some state operator it is instructive to prove 
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it directly by means of (39). We put 

--- (&Q)~, n =- ( G P )  ~, 

Now 

ei ~ (A.,Qi) 2, 7/, =- (A~,Pi) 2. 

E" 9) -~-~(EI " 9)1- I -82"  ~ 2 ) ~  t- E l "  E2"t- 9) 1" 9)2 

The expressions 

hl~--�88 " 9)1+e2" 9)2) 

1 2.~ h2[  16 • 2/d,2 ] 
�9 �9 �9 E 2 " ~ ' T g ) I  �9 T]2 

can be estimated by using the uncertainty relations for M~, M2, ei" 9)i -> ha/4 
( i=  1,2): 

h2 > fi2 / 1 "~ h 2 16 
h,>_-- ,  x--- 

8 r e \ x ~  8 ' ~2A 2/,2, 

Thus the sum is 
~2 

e" 9) = hlWh2~- - 
4 

The equality sign holds for hi = h2 = h2/8, that is, 

h 2 h2/z 2 
el" ~/i 4 x =  1, i.e., E 1 = T ~  2 

which is the case of the strict preparatory measurement (41). Each of the 
terms hi would suffice to give an uncertainty relation 

h 2 
e.  "q-> hi>-~ - 

the structure of hi is such that the UR-for each single one of the measuring 
systems Mi leads to 

h 2 
e- 9 ) ~ - -  

16 

It is this aspect of the UR which has been emphasized by Bohr: the 
impossibility of arbitrarily sharp simultaneous measurements results from 
the fact that the measuring device being a physical system is subject to the 
UR. 

There is another important feature of the UR that can be studied within 
our model: as Heisenberg pointed out, the presence of a position-measuring 
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device "disturbs" the sharpness of determination of momentum and vice 
versa. This becomes most clear from the second term h2. The "undisturbed" 
product (el �9 e2)/(A2/~ 2) may be made arbitrarily small but then the product 
A2/x2*Tl" ,72/16 of the "disturbing" contributions in (39) will increase to 
infinity. If one tries to diminish the el, e2 the UR of the M1, M2 comes into 
play to raise the product .71 " *72; similarly the interaction parameters A,/~ 
are placed in such a way that there is no possibility to escape the limit 
hE >- h2/8. 

3.4. Origin of  the UR: Mutual  Disturbance of  the Measuring Devices 

It has often been tried to explain the UR as a restriction of simultaneous 
measurability from an uncontrollable influence on the object system by the 
measuring act. That this view is somewhat misleading can be seen from our 
model: what is decisive is a mutual influence between the measuring instru- 
ments (cf. de Muynck et al., 1979). The commutation relation (3) gives rise 
to a "coupling" of the measuring particles which can be read off from (33c): 

H(r,,2 ) :/A_:~_.~ [Q, P]|174174174 
n z 2 

Obviously it is his term containing the product A �9 that is responsible for 
the disturbing unsharpnesses, so that one might try to introduce an artificial 
compensating interaction -H(~ 1'2). It is clear, however, that there is no way 
to get rid of the UR. 

Replacing (32) and (33c) by 

H(r") = [ AQ| PI| I + IxP| I | P2+~-A-~n[ Q, P]| P,| P2} 8( t) 

U~")=exp{-~AO|174 �9 exp { - ~ / x P |  I |  

�9 e x p { - ~ ( n  + 1)[O, P]|174 P2} 

we get a measurement of an observable af~ with unsharpnesses 

( A f~O )2 =-~ ( A ~, Ol)2 + ( n -1)2 tx-4-4 ( A 4~2P2)2 

(A g,.)p)2 = 1_~ (A,~2 Q2)2 k_ (rt .k_ A2 1)2 ~- (A.,Pt) 2 

for which the UR is still valid: all that one can do is to eliminate just one 
of the disturbing unsharpnesses (n = + 1). 
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3.5. Order of Magnitude of Planck's Constant / i - -Class ical  Limit 

The concept of real measurements and its realization by our models 
enabled us to give a precise quantum mechanical reconstruction of the old 
semiclassical argumentations in favor of the individualistic interpretation 
of the UP,. The interrelations between measurement unsharpnesses, mutual 
disturbance of measuring devices, and canonical commutation relations 
have become quite clear. Yet, up to now the order of magnitude of Planck's 
constant h was of no account; its precise value depends on the choice of 
units. As we shall see now the magnitude of h determines whether a joint 
measurement may be considered "classical" or not. 

In classical physics a notion of "exactly defined" particle trajectories 
measurable with "arbitrary precision" is admissible which implies the fol- 
lowing presuppositions: 

(I) A particle possesses "exact" values of position and momentum. 
(II) Measurements of position and momentum do not disturb each 

other. 
(III) The "accuracies" of measurements may be increased arbitrarily. 
(IV) The object system need not get influenced by the measurements. 

We may readily give a quantitative formulation of (I)-(IV) in terms of 
our model if we identify the classical "inaccuracies" with the unsharpnesses 
of unsharp observables. As we have seen in equation (30) this identification 
is possible for a certain class of initial states ~ obeying postulate (I) in the 
following form: 

(I') States ~ entail position and momentum indeterminacies which 
are small compared to the measuring unsharpnesses: 

Conditions 

(H') 

(I'1) A,Q<< AsQ; (I'2) A,P<< AgP 

Strictly speaking the functions x/AaPl(A(q-q')) and 
~/~P2(/ . t (p-p ' ) )  shall be slowly varying everywhere within 
ranges of q' and p' values for which ~(q') and ~(p')  are 
appreciably different from zero. The above inequalities wilt be 
taken as symbolic expressions of these relationships. 

(II)-(IV) are translated in a similar way. 

The measuring unsharpnesses are practically identical with 
those of the single measurements: 

A/~) ----- 1A. ,  Ql, AgP - 1 A,~2Q 2 
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(III') 

that is, 

1 
(II ' l)  ~-A.~Q,>>2A%P2; (II'2) 1A.RQ2>>2A,~,PI 

As in (I') these inequalities are assumed to hold in_a strong 
sense such that the (translated) functions x/A-~l(Aq), x//~qb2(/zp) 
are practically constant in intervals where ~2 and c~1 are not 
negligible. 
The constant h2/4 is very small in comparison to the product 
of the unsharpnesses 

h 2 
(AsQ)2 �9 (A~P) 2 >> ~- 

(IV') 
which means that it may be neglected as a lower limit. 
The state ~ of the system is left practically unchanged during 
the measuring process. 

Now it is easy to show that each of the conditions (I') and (II') implies 
(III'), whereas only the combination of both is suff• for (IV'). (We do 
not give the proofs here.) Especially, from (I') and (II') we get the following. 
Let qo = (Q)~, po=(P)~,  then the change of  state for initial states P[~]  
obeying (I') and (II') is 

P[~]-~l?V(E,F)~-P[~]{f dqAICb,(A(q-qo))12fFdp~lCb2(l~(p-po))l} 2 
The normalized final state W(E, F) is identical to the initial state P[~],  
that is, (IV') holds. 

Conditions (I') and (II') lead to measurements which possess all 
features typical of  classical mechanical measuring situations, namely, (I) 
to (IV); since the values of position and momentum (qo, Po) are (almost) 
exactly defined (I) there exist weakly predictable results E x F: the proba- 
bility 

pf~g(E • F)  = tr( lYe'(E, F)]  

=f dqXldP'(A(q-q~ dPlXld~2(Ix(P-P~ 
E F 

is near to unity if E ~_ Eo = (qo-  6q, qo+ 6q), F _ Fo = (Po -  6p, po + 6p) with 
sufficiently large 8q, 8p. Further, since the system does not get influenced 
(IV) results E ~ Eo, F D Fo are weakly repeatable. One simply has to 
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combine two position and momentum measuring instruments with a "macro- 
scopic" product of the undisturbed unsharpnesses AyoQ, AgoP (II'), then 
for initial states obeying (I') ,we enter the classical situation ((III), (IV)). 

Unsharpness distributions f, g may be interpreted as confidence func- 
tions in the classical case only. The probability for the registration of unsharp 
points Eq, F v (with 6q << A/Q, 61)<< AgP), 

p~g(Eq • Fv) ~-- (Sq 6p)Al~l(h( q -- qo))] 2" ~l~2(~(p -po))] 2 

is nonnegligible only for values q, p close to qo, Po, 

[q - qol ~ AIQ, IP -Po[ ~< digP 

Which result (q,p) will come about is objectively undecided as the 
unsharpnesses AyQ= (I/A)A~Q1 ' hgp~--(1/i.t)h%Q2 originate from some 
indeterminacy in the M~ states ~i. I f  a result (q*, p*) has been established 
the "true" values (qo, Po) are known only up to subjective uncertainties 

asQ ' agp. 
To sum up, the above considerations reveal the decisive role of Planck's 

constant. Only with respect to measuring instruments yielding macroscopic 
uncertainty products/XyQ. Agp >> h is it possible to neglect certain restric- 
tions incorporated in the quantum mechanical language and to make use 
of the language of classical physics. 

It appears remarkable that the indeterminacy product A Q. A~P need 
not be "macroscopic" for classical measurements. Thus one can measure 
classical trajectories for quantum mechanical, microscopic particles (S, ~p) 
with A Q. h~p--h.  As a specific example we should mention the Wilson 
chamber (Heisenberg, 1930) where microscopic particles propagate along 
visible macroscopic paths. The collapse of wave packets caused by ionization 
of scattering molecules becomes negligible if the particle travels fast enough 
to avoid any appreciable spreading of the packets. Heisenberg gives a 
treatment of the UR for this example by means of Huygens' principle, and 
it becomes particularly clear that the notion of unsharp observables fits 
with his intuitive conception of "measuring inaccuracy". 

3.6. Heisenberg's Slit Experiment 

Although our model allows an utmost clear and mathematically simple 
analysis of what happens in joint measurements it must be admitted that 
we have been using quite an unrealistic Hamiltonian (32) for a model of 
real measurements. Therefore we shall conclude our work by discussing as 
an intuitive example Heisenberg's well known slit experiment (Figure 1). 
[Besides, an analysis of Wootters' and Zurek's (1979) treatment of Bohr's 
double slit experiment shows that it may be reformulated in terms of unsharp 
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r 
a 

Fig. 1. Slit experiment. 

---~X 

observable, but we shall not enter this topic now.] The object system for 
example, an electron-- impinges on a wall at x - 0 which has a slit of  width 
a (along the y axis). The electron is assumed to possess a rather well-defined 
momentum from a preparatory momentum measurement.  Then we may 
represent the incident part  ~< of the wave function ~p<(x, y) as a plane 
wave with 

2zrh 
(Py),~ = 0, A,~Px~--A,~Py<< , h , ~ Y > > a  

a 

The wall will be described as an infinitely high potential well with negligible 
thickness. Then the stationary Schr6dinger equation reduces to the classical 
optical wave equation where the slit can be treated as boundary conditions. 
This set-up may be interpreted as preparatory real position measurement.  
The Hilbert space of  the (two-dimensional) electron is 

= L2(~2) = L2(R)| L2(~)___ ~(x) |  ~(y) 

thus "system M ~ W(x),, may be used for a position measurement  on "system 
S ~ ~(Y)", the external potential V(x,  y)  serving as "interaction H,  between 
S and M " .  By an ideal first-kind measurement  of  the observable 

F ( Q M ) = F ( X ) =  ~ x . p X ( E . )  
n = - o o  

E.  = (x .  - 6x, x .  + fix], Xo = O, x.+~ = x.  + 26x 
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it is possible to decide which of the orthogonal parts r q~< will be realized, 
that is, whether or not the particle has passed the slit. After registration of 
an En (xn > 0) the state of S & M is 

[ px ( E.) |  I ]~ =[ p x  ( E,,)| I]~,> 

whereas the state of S alone becomes 

�9 ~")(y) -- ~>(x. ,  y) 

(if we neglect the width 23x of E,) .  
Within the slit (n =0,  Xo=0) the function ~O)(y) is approximately 

constant for wavelengths A =- (2~rh/(Px)~) << a: 

a -1/2" t" ~ (A << a) (42) q~<O)(y) ~_ ,~ E-a/2,a/2]ty/ 

[strictly speaking, ~(O)(y) tends to zero for [y[--)a/2; see Beck and 
Nussenzveig (1958)]. Thus the slit provides a preparation of an unsharp 
point 

(y = O, fo), fo(Y) = a - l X [ - a / z , a / 2 ] ( Y )  (43a) 

with position unsharpness 

Ay = Ay ~ y = a (up to a factor near to 1) (43b) 

Momentum indeterminacy in ~o )  is represented by an infinite spread 
A,~o~py = ~ which does not get finite even for an exact calculation of ~(o). 
Only a (nonsingular) potential well with finite thickness and smooth surface 
would lead to a finite Av~o~py as pointed out by Beck and Nussenzveig. 
Following Heisenberg, within the present idealization (42) we take as a 
measure of momentum indeterminacy the width of the central peak in the 
interference pattern [Xi~(n)(y)[ 2 (X n >> a >> A) which is essentially determined 
by the Fourier transform ~(O)(py): 

2~rh 
t~py --- , (Py)~0(-) = 0 (44) 

a 

The incident state was assumed to result from a preparatory momentum 
measurement, so it is characterized by an unsharp value (py = 0, go), A~oPy = 
A~, Py<<27rh/a. After the electron has passed the slit there remains a 
modified unsharp value (py=O,g~o ")) with g~on)(py)=l~Z(~ 2 and 
Ag(o.)Py = 3py ~- 2wh/ a. 

From (43) and (44) we get an uncertainty relation 

AeoY. Ag~o.,Py~-Ay. ~py~-27rh 

which says-- in full agreement with Heisenberg (1930)--that the presence of 
a position-measuring apparatus "disturbs" the "accuracy" of determination 
of  momentum. This model, however, does not provide an operational 
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interpretation of momentum unsharpness ~py but only of position uncer- 
tainty Ay -~ a. 

4. CONCLUSION 

In the present paper we provide an operational interpretation of the 
uncertainty relation for position and momentum referring to single physical 
systems. The strong preparatory property of first-kind measurements necessi- 
tates the introduction of unsharp observables in order to get a concept of 
joint measurements of incompatible observables (Section 2). The concept 
of unsharp observables is interpreted within a quantum mechanical theory 
of measurement proving it reasonable to speak of joint position and momen- 
tum measurements (Section 3). 

Results of joint position-momentum measurements on an individual 
system may be unsharp points ((q, fq), (p, gp)) with uncertainty distributions 
fq, gp centered around q, p and obeying the UR AyQ. AgP >- hi2. This relation 
determines the lower limit of (individual) unsharpnesses of measuring 
results which are necessarily connected with joint measurements. 

By means of several quantum mechanical models of unsharp position 
and of position-momentum measurements we give operational expressions 
of the unsharpnesses AsQ, Agp in terms of quantities characterizing measur- 
ing interactions and preparations of measuring devices. From their origin 
the unsharpnesses may be interpreted as measures of indeterminacy. On the 
other hand, the significance of the AyQ, Agp for the measured object depends 
on the circumstances. First, a certain class of initial states ~ of the object 
admits (nonobjectifying) preparatory measurements; then the 
unsharpnesses AfQ, Agp stand for position and momentum indeter- 
minatenesses of the object after measurement. Second, in some "classical" 
limit with states r representing well defined position qo and momentum Po 
(h/2<< A~Q. A~P<< AfQ. AgP), AfQ and AgP may be regarded as measures 
of subjective uncertainty (ignorance) with respect to the "true" values qo, Po. 

The model enables us to give a strictly quantum mechanical operational 
derivation of the uncertainty relation which serves as a reconstruction of 
the well-known semiclassical derivations. 

Finally, as an intuitive example, we give a quantum measurement 
theoretical treatment of Heisenberg's slit experiment which shows-- 
similarly to the former model--that it is the mutual disturbance of the 
measuring devices which is responsible for the occurrence of the UR for 
incompatible observables. 

To sum up, what has been shown is the following: there are in quantum 
mechanics measurement situations to which the individualistic interpreta- 
tion of the UR is applicable. In case of "real" joint measurements the 
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measuring uncertainties are subject to an UR. The statistical interpretation 
remains valid with respect to sharp (first-kind) measurements. 
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